quaderno/Matematica/Formulario.md

21 lines
2.1 KiB
Markdown
Raw Normal View History

2024-12-18 21:10:39 +01:00
# Trigonometria
| Nome | Formula | Lettere |
| ------------------------ | -------------------------------------------------------------------- | ------------------------- |
| Pitagora | $i^2=c^2+c^2$ | $i$ ipotenusa, $c$ cateto |
| 1 relazione fondamentale | $\sin^2(\alpha)+\cos^2(\alpha)=1$ | $\alpha$ angolo scelto |
| 2 relazione fondamentale | $\tan(\alpha)=\frac{\sin(\alpha)}{\cos(\alpha)}$ | $\alpha$ angolo scelto |
| cotangente | $\cot(\alpha)=(\tan(\alpha))^{-1}=\frac{\cos(\alpha)}{\sin(\alpha)}$ | $\alpha$ angolo scelto |
| | | |
| Angolo notevole | Seno | Coseno | Tangente |
| ------------------------ | -------------------- | -------------------- | ----------------------------------------------------------- |
| $0°=0rad$ | $0$ | $1$ | $\frac{0}{1}=0$ |
| $30° = \frac{\pi}{6}rad$ | $\frac{1}{2}$ | $\frac{\sqrt{3}}{2}$ | $\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}=\frac{1}{\sqrt{3}}$ |
| $45° = \frac{\pi}{4}rad$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=1$ |
| $60° = \frac{\pi}{6}rad$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$ | $\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}$ |
| $90°=\frac{\pi}{2}rad$ | $1$ | $0$ | $\frac{1}{0}$ |
| $180°=\pi rad$ | $0$ | $1$ | $\frac{0}{1}$ |
| $270°=\frac{3\pi}{2}rad$ | $1$ | $0$ | $\frac{-1}{0}$ |