# Trigonometria | Nome | Formula | Lettere | | ------------------------ | -------------------------------------------------------------------- | ------------------------- | | Pitagora | $i^2=c^2+c^2$ | $i$ ipotenusa, $c$ cateto | | 1 relazione fondamentale | $\sin^2(\alpha)+\cos^2(\alpha)=1$ | $\alpha$ angolo scelto | | 2 relazione fondamentale | $\tan(\alpha)=\frac{\sin(\alpha)}{\cos(\alpha)}$ | $\alpha$ angolo scelto | | cotangente | $\cot(\alpha)=(\tan(\alpha))^{-1}=\frac{\cos(\alpha)}{\sin(\alpha)}$ | $\alpha$ angolo scelto | | | | | | Angolo notevole | Seno | Coseno | Tangente | | ------------------------ | -------------------- | -------------------- | ----------------------------------------------------------- | | $0°=0rad$ | $0$ | $1$ | $\frac{0}{1}=0$ | | $30° = \frac{\pi}{6}rad$ | $\frac{1}{2}$ | $\frac{\sqrt{3}}{2}$ | $\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}=\frac{1}{\sqrt{3}}$ | | $45° = \frac{\pi}{4}rad$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=1$ | | $60° = \frac{\pi}{6}rad$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$ | $\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}$ | | $90°=\frac{\pi}{2}rad$ | $1$ | $0$ | $\frac{1}{0}$ | | $180°=\pi rad$ | $0$ | $1$ | $\frac{0}{1}$ | | $270°=\frac{3\pi}{2}rad$ | $1$ | $0$ | $\frac{-1}{0}$ |